内页banner
  • How to choose a CNC press brake machine?
    How to choose a CNC press brake machine? Oct 22, 2025
    Choosing the right CNC press brake machine can make a big difference in your production efficiency, bending accuracy, and overall profitability. With so many options on the market—each offering different features, tonnage capacities, and automation levels—it’s easy to feel overwhelmed. This guide will help you understand what really matters when selecting a CNC press brake, so you can make a smart investment that fits your business needs.   I. Core Considerations (Basis for Selection) 1. Processing Requirements Analysis (First ask yourself the question) Material properties Material: Is it mainly low-carbon steel, or stainless steel, aluminum, copper, etc.? The tensile strength of different materials varies, which affects the tonnage calculation. Plate thickness: What is the thickness range of the plates you bend most frequently? For example: 0.5mm - 6mm Sheet size: What are the maximum processing length and width? For example: 3m x 1.5m Product process requirements Bending Angle: Usually 90°. Is it necessary to bend obtuse angles, acute angles or complex shapes? Precision requirements: How high are the tolerance requirements for angles and dimensions? (For example: ±0.5° or ±0.1mm Production batch size: Is it a small batch with multiple varieties or a large batch with a single product? This is related to the demand for the degree of automation. The complexity of the parts: Is it necessary to have complex functions such as multi-axis movement of the rear stopper, winding, and dead edge pressing?   2. Key machine parameters (To pay attention to when reading the equipment manual Nominal pressure (tonnage) : This is the core capability of the bending machine. It must be calculated based on your thickest and hardest material. Simple calculation formula: P = (650 * S² * L)/V P: Required pressure (tons) S: Plate thickness (mm) L: Bending length (m) V: The width of the lower die slot (mm), usually taken as 8 times the thickness of the plate. For example, when bending a 3mm thick and 3-meter-long low-carbon steel plate using a 24mm wide lower die, the required pressure is approximately (650 * 3² * 3) / 24 ≈ 731 tons. Therefore, it is more reliable to choose a machine with a capacity of around 100 tons. It is recommended that the tonnage selected be 20% to 30% higher than the calculated value in case of emergency. The length of the workbench: It determines the maximum length of the sheet that can be bent. Please select based on the maximum size of your product. Common sizes include 2.5m, 3m, 4m, etc. Throat depth: It refers to the depth from the bending line to the inner side of the frame. This determines whether the folded side will hit the machine body when bending "box" type workpieces. The deeper the throat opening, the wider the processing range. Column spacing: The distance between the frames on both sides. The sheet to be bent must be able to be delivered to the rear stopper position through this spacing. This parameter is very important for processing workpieces with bends in the middle, such as "large door frames".   3. Numerical Control System and Automation Configuration (Determining Efficiency and ease of use) Brand of numerical control system International well-known brands: such as Accurl, have stable systems, powerful functions and good operation logic. Selection suggestion: Choose based on the operator's learning cost and budget. Whether the interface is intuitive and whether programming is convenient are important considerations. Y-axis (slider travel control) : The core axis that controls the bending depth (Angle). It is usually an electro-hydraulic servo system. The number of Y-axes determines whether the slider can remain parallel at different positions. For machines with long countertops, at least two Y-axes (one at each end) are required to ensure accuracy, and high-end models may have three or more. X-axis (forward and backward movement of the rear stopper) : Controls the bending position. The travel of the X-axis determines the minimum margin that can be bent. The rear stopper of high-end models is divided into multiple sections, which can avoid the already bent edges. R-axis (rear stopper moving up and down) : It is used to avoid complex workpieces or achieve special processes. Z-axis (left and right movement of the rear stopper) : Usually, the rear stopper beam is divided into two sections, left and right, which can move independently and is used for folding beveled or asymmetrical workpieces. Automated selection and matching (significantly enhancing efficiency) Deflection compensation: When the long table surface is bent, the slider and the table surface will undergo slight deformation due to force, resulting in inaccurate middle angles. The deflection compensation function (hydraulic or mechanical) can automatically counteract this deformation and is a key configuration to ensure the bending accuracy of long workpieces. It is strongly recommended to be equipped with it. Automatic mold changing: For working conditions where mold changes are frequent, it can greatly save preparation time. Robots or automatic loading and unloading: Suitable for large-scale and repetitive production, achieving "unmanned" workshops. Ii. Equipment Type Selection Upward movement type (arch frame type) : The slider moves downward in the upward direction. The mainstream type features good rigidity and high precision, and is suitable for the vast majority of application scenarios. Downward movement type: The worktable moves upward. The body has a low center of gravity, good stability and a small floor area, but the operating space is relatively cramped. Iii. On-site Verification and After-sales Service Sample testing: Be sure to bring your typical products and plates (especially the thickest, longest, and most demanding ones) to the manufacturer or existing customers for on-site testing. Check the accuracy and straightness of the bending Angle. Test the programming convenience of the numerical control system. Feel the noise and vibration when the machine is running. Inspect after-sales service: Ask the manufacturer if there are service outlets in your location, how long the response time is, and whether the supply of spare parts is sufficient. Good after-sales service can greatly reduce downtime losses.   if you have more ideas, please contact us! Tel: +86 -18855551088 Email: Info@Accurl.com Whatsapp/Mobile: +86 -18855551088
  • Follow us to see how an Accurl bending machine completes complex sheet metal parts.
    Follow us to see how an Accurl bending machine completes complex sheet metal parts. Sep 28, 2025
    From digital drawings to perfect parts: Follow us to see how an Accurl bending machine completes complex sheet metal parts In the world of sheet metal processing, behind every complex chassis, bracket or casing, there is a transformation journey from flat to three-dimensional. Today, let's act as your guides and step into the workshop together, following an Accurl CNC bending machine to see how it gradually transforms an ordinary metal sheet into a precise three-dimensional part.   Protagonist: Accurl high-end series CNC bending machine   The first stop: Seamless arrival of data The journey begins in the digital world. The operator can easily import the pre-written CNC program into the self-developed ECU control system of the Accurl bending machine via local area network or USB. You will see: a clear 3D graphic simulation on the screen, previewing the entire bending process in advance. This can not only detect possible interference and errors, but also optimize the bending sequence to ensure absolute safety. This is the starting point of intelligent manufacturing.   Stop Two: Intelligent Preparation - The "Brain" Commands the "Hands and Feet" After the program is loaded, the "intelligence" of the device begins to manifest. You will see: The operator only needs to click once on the control console, and the automatic mold changing device at the back of the machine starts to operate, precisely moving the required upper and lower molds to the working position. Meanwhile, the hydraulic clamping deflection compensation system automatically adjusts the pressure according to the tonnage and length of this processing, ensuring that the bed remains absolutely straight even under force, laying a foundation for perfect precision.   The third stop: The Art and Science of the First Production Now, the operator places the first laser-cut sheet in position. You will see: The operator uses the Accurl high-precision rear stopper system in conjunction with the R-axis (rear stopper lifting) to quickly set the initial position. To handle the multiple bends of this complex part, the C-axis that comes standard with the Accurl bending machine begins to come into play. It controls the depth to which the upper die enters the lower die, that is, it controls the bending Angle. In programming, the system has automatically calculated and compensated for the rebound amount according to different material and Angle requirements. When non-90-degree bending is required, you will see that the X-axis (front and back of the rear stopper) and C-axis of the equipment configuration operate in coordination. By precisely controlling the stopper position and bending depth, complex bevel bending can be easily achieved. Overcoming complexity: On this bracket, there is a "Z" -shaped bend that requires two positioning. You will witness the precise movement of the rear stopper, with the sheet material skillfully flipped over. Under the guidance of the machine, the operation is smooth and accurate, without any jerks.   The fourth stop: Absolute Consistency in Repetition After the first piece passed the inspection perfectly, it entered the mass production stage. You will see: This is the moment when the Accurl bending machine truly demonstrates its value. Thanks to the outstanding rigidity of its integral welded fuselage, the frame undergoes almost zero deformation under continuous heavy loads. Result: The 1st piece, the 50th piece, the 500th piece... Every corner of each part maintains an astonishingly consistent Angle and size. This is the "copy and paste" precision brought by the rigid structure, which greatly reduces the quality inspection cost and the rate of non-conformity.   if you have more ideas, please contact us! Tel: +86 -18855551088 Email: Info@Accurl.com Whatsapp/Mobile: +86 -18855551088
  • What are the application scenarios of CNC Press Brake Machine?
    What are the application scenarios of CNC Press Brake Machine? Jul 25, 2025
    What are the application scenarios of CNC Press Brake Machine?   1.Metal Fabrication & Sheet Metal Chassis/cabinet manufacturing: such as electrical control cabinets, server cabinets, industrial equipment enclosures, etc. Ventilation ducts (HVAC) : Used for sheet metal bending of air conditioning ducts, smoke exhaust ducts, etc. Metal doors and Windows/curtain walls: Precise bending of aluminum alloy or stainless steel frames for construction.   2. Automotive & Transportation Body components: door brackets, chassis structural parts, exhaust pipes, etc. New energy vehicle battery box: Lightweight bending of high-strength aluminum plates. Rail transit components: Metal decorative panels or structural parts for high-speed rail/metro carriages.   3. Aerospace Aircraft structural components: wing ribs, bulkhead brackets and other high-strength alloy parts. Engine components: Complex multi-angle bending of high-temperature resistant metals. Precision forming of titanium alloy or composite materials for spacecraft casings.   4. Electronics & Appliances Electronic product casings: metal bases for laptops, panels for smart home devices. Internal brackets for electrical appliances: compressor brackets for refrigerators, metal inner linings for microwave ovens. Heat sink: High-density fins are bent to optimize heat dissipation performance.   5. Energy & Power Solar bracket: Batch bending of photovoltaic panel support structures. Transformer box: The metal casing of large power equipment. Nuclear power equipment: Safe forming of corrosion-resistant stainless steel components.   6. Industrial Machinery Agricultural machinery: Sheet metal covers for harvesters, tractor parts. Construction machinery: excavator cab frame, hydraulic pipe fittings. Food machinery: Stainless steel conveyor belt brackets, sanitary-grade containers.   7. Medical Equipment Surgical instruments: Precise bending of stainless steel forceps and tweezers. Medical bed/trolley: Cleaning and bending of antibacterial metal frames. Imaging equipment housing: Protective covers for MRI or CT scanners.   8. Architecture & Decoration Metal artworks: Creative bending of sculptures and decorative lines. Parametric design and processing of special-shaped aluminum plates for building curtain walls. Furniture design: Personalized forming of modern metal tables and chairs.   9. Defense & Military Armored vehicle components: Special Angle bending of bulletproof steel plates. Weapon stand: High-stability metal structure processing. Drone frame: Lightweight aluminum alloy fuselage formed.   If you have more ideas, please contact us! Tel: +86 -18855551088 Email: Info@Accurl.com Whatsapp/Mobile: +86 -18855551088

Need Help? Chat with us

leave a message
If you are interested in our products and want to know more details, please leave a message here, we will reply you as soon as we can.
Submit
Contact us #
+86-555-2780553

Our hours

Online 24 hours a day

Home

Products

whatsApp

contact